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Topic
Intro, schedule, and logistics
Applications of visual analytics
Basic tasks, data types
Data assimilation and preparation
Introduction to D3
Bias in visualization

Data reduction and dimension reduction

Data reduction and dimension reduction

Visual perception and cognition

Visual design and aesthetics

High-dimensional data visualization: linear methods
High-dimensional data visualization: non-linear methods
Cluster analysis: numerical data

Cluster analysis: categorical data

Principles of interaction

Midterm #1

Visual analytics

The visual sense making process

Maps

Visualization of hierarchies

Visualization of time-varying and time-series data
Foundations of scientific and medical visualization
Volume rendering

Scientific and medical visualization

Visual analytics system design and evaluation
Memorable visualization and embellishments
Infographics design

Midterm #2

Projects

Project #1 out

Project #2(a) out

Project #2(b) out

Final project proposal call out

Final project proposal due

Project 3 out
Final Project preliminary report due



WHEN TO USE CLUSTER ANALYSIS

Data summarization
» data reduction
» cluster centers, shapes, and statistics

Customer segmentation
= collaborative filtering

Social network analysis
= find similar groups of friends (communities)

Precursor to other analyses
= use as a preprocessing step for classification and outlier detection
= use it for sampling and data reduction



ATTRIBUTE SELECTION

With 1,000s of attributes (dimensions) which ones are
relevant and which one are not?
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ATTRIBUTE SELECTION

How to measure attribute "worthiness”
= use entropy

Entropy
= originates in thermodynamics
= measures lack of order or predictability

entropy

Entropy in statistics and information theory
= has avalue of 1 for uniform distributions (not predictable)
= knowing the value has a lot of information (high surprise)
= has avalue of 0 for a constant signal (fully predicable)
= knowing the value has zero information (low surprise)
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ENTROPY

Assume m bins, 1<i<m: g-= —i[pilﬂg(pt‘) + (1 — pi)log(1 — pi)).
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(c) Distance distribution (uniform) (d) Distance distribution (clustered)

Algorithm:
= start with all attributes and compute distance entropy
= greedily eliminate attributes that reduce the entropy the most
= stop when entropy no longer reduces or even increases



HIERARCHICAL CLUSTERING

:
5 B | .
i ’__I_‘ 6 ]

Two options for building the dendrogram on the left
= top down (divisive)
= bottom up (agglomerative)



BOTTOM-UP AGGLOMERATIVE METHODS

Algorithm Agglomerative Merge(Data: D) '.".-'.f-__"
begin :/ '\
Initialize n x n distance matrix M using D; #, 0 00®
repeat ¢ .
Pick closest pair of clusters i and j using M; ..ﬁ/ \.i. _,‘./\

Merge clusters ¢ and J; | AVEERVAVERRVAVERRVAN

Delete rows/columns ¢ and j from M and create
a new row and column for newly merged cluster;

Update the entries of new row and column of M; f luster 8 :.
until termination eriterion; ,
return current merged cluster set;: L

end .

How to merge? ‘
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- Simple linkage - Average linkage - Complete linkage

MERGE @

CRITERIA

Single (best-case) linkage
= distance = minimum distance between all m; - m; pairs of objects
= joins the closest pair

Complete (worst-case) linkage
= distance = maximum distance between all m; - m; pairs of objects
= joins the pair furthest apart

Group-average linkage
= distance = average distance between all object pairs in the groups

Other methods:

= closest centroid, variance-minimization, Ward’s method



COMPARISON

Centroid-based methods tend to merge large clusters

Single linkage method can merge chains of closely related
points to discover clusters of arbitrary shape

= but can also (inappropriately) merge two unrelated clusters, when
the chaining is caused by noisy points between two clusters
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COMPARISON

Complete (worst-case) linkage method tends to create
spherical clusters with similar diameter
= will break up the larger odd-shaped clusters into smaller spheres

= also gives too much importance to data points at the noisy
fringes of a cluster

Average Linkage Cluster Analysis
of Data Containing Parallel Elongated Clusters
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COMPARISON

The group average, variance, and Ward’s methods are more
robust to noise due to the use of multiple linkages in the
distance computation

Hierarchical methods are sensitive to a small number of
mistakes made during the merging process
= can be due to noise

. CLUSTER A
= no way to undo these mistakes (ARBITRARY SHAPE]
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Highly-cited density-based hierarchical clustering algorithm
(Ester et al. 1996)
= clusters are defined as density-connected sets
» epsilon-distance neighbor criterion (Eps)
Neos(P) = {q €D | dist(p,q) < Eps}
=  minimum point cluster membership and core point (MinPts)
INgos(9)] > MinPts
= notions of density-connected & density-reachable (direct, indirect)

= apoint p is directly density-reachable from a point g wrt. Eps,
MinPts if

P € Ng,i(q) and
INEos(9@)] > MinPts (core point condition)
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PROBABILISTIC EXTENSION TO K-MEANS

First a comparison:

Different cluster analysis results on "mouse" data set:

Original Data k-Means Elu*_-‘.tering EM Clustering
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MAHALANOBIS DISTANCE

The distance between a point X and a distribution D

= measures how many standard deviations X is away from the mean
nofD

= S s the covariance matrix of the distribution D

= the Mahanalobis distance D,, of a point x
to a cluster center p is

~ Mahalanobis
| distance Dy,(x)

Da(x) = \/(z — p) TS~z — p),
= xand u are N-dimensional vectors

= Sisthe NxN covariance matrix

= the outcome Dy,(x) is a single-dimensional |
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PROBABILISTIC CLUSTERING

Is a better match for point distributions
= overlapping clusters are now possible
»  better match with real world?
=  Gaussian mixtures .

Need a probabilistic algorithm X
= Expectation-Maximization

E-Step
Update
Variables

M.Sgp
Update
Hypothesis




EM Algorithm (Mixture Model)

probability that data point d; Is in class c;
e Initialize K cluster centers (= Mahanalobis distance of d; to ;)

e |terate between two steps
— Expectation step: assign points to m clusters/classes

P(d ec,)=w, Pr(d |ck)/Zw Pr(d,|c;)
ZPI‘(d €C,)

W, = v = probability of class c,

— Maximation step: estimate model parameters

do similar also for _ Z d,P(d; c,)
covariance matrix S Z P(d; =c;)
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Iteration 1

The cluster
means are
randomly
assigned

Fre-Hne4091 007

22580645 1612903
u

0.3225806451612903 )
n
)
J | ]
| ]

’ . 0.32 1580645161290

IGaussMi}{ 'I HingF‘tsl RandomPts | ClearPis InitKerneIs“E j|Eru115tep j




Iteration 2

| ]
ean Likelihood =-12.501 213295068318

IGauasMix "I RingF’tsl RandomPts | ClearPts InitKerneIs“S leruHStep j




Iteration 5

flean Likelihood =-41.87939633830106

pA0358483418 34
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Iteration 25

hean Likelihood =-11.1 34522888 6774
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LINEAR DISCRIMINATE ANALYSIS (LDA)

LDA requires class labels, PCA does not
= having class labels enables better segmentation

Principal Component Analysis Linear Discriminant Analysis
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LINEAR DISCRIMINATE ANALYSIS (LDA)

Procedure .
imize i i Sy =D N(F, - X)F - %)
= maximize inter-class variance “b AViX T XX — X
=1
g N
L . s T
* minimize intra-class variance Sy = ZZ(_.\.I.J =X NX; ;= X))
i=l j=1

Fisher Criterion
T /
PRSPl . o
P is low-Dim projection

= using this ratio 7}, =arg max
> |P7s,P]

= can be solved using Eigenvector decomposition

PCA projection: LDA projection:
Maximising the variance of Maximising the distance

Labelled
data the whole set between groups

= finds a basis that maximally
separates the classes . ofe

= Dim(P) is the # of classes g




T-SNE

t-distributed stochastic neighbor embedding
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T-SNE DISTANCE METRIC

Uses the following density-based (probabilistic) distance

metric
o exp(—|x;—xj|2/2:rf)
Pjli = Z exp (_le_ B xk|2/25i2)

k£i

Measures how (relatively) close x; is from x; considering a
Gaussian distribution around x; with a given variance o,
= this variance is different for every point

= tis chosen such that points in dense areas are given a smaller
variance than points in sparse areas



T-SNE IMPLEMENTATION

Use a symmetrized version of the conditional similarity:

___ Puitpaj
Pij = N

Similarity (distance) metric for mapped points:

f(lxi—x;)) :
gij = with f(2) =
Zf (Jx; = xx])
ki

1
1472

This uses the t-student distribution with one degree of
freedom, or Cauchy distribution, instead of a Gaussian
distribution



Can use mass-spring system enforcing minimum of |p;-q|
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images with 8*8=64 pixels each.



ANIMATED LAYOUT



MORE INFORMATION

See this webpage



https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

SHORTCOMINGS OF T-SNE

t-SNE does not preserve global data structure
= only within cluster distances are meaningful
= between cluster similarities are not guaranteed

t-SNE MINST
More recently introduced: U-MAP Il R
g Pog-:zss::lrt:m f"\f 3 s
= follows the philosophy of t-SNE G vt sy e

20

are less similar...

= but introduces many improvements
= more info, for example, here

tSNE2
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https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668

REDUCTION VIA NEURAL NETWORK

Train a Variational Autoencoder (VAE)
= optimize the output reconstruction loss of the input
= also optimize the latent distribution to be standard normal

i
e {5 J . S
input | XSl sample . ' 5 . [ outpu
o . @ .
® i) [
encoder \V atent decod



REDUCTION VIA NN: RESULTS

Dataset: 60,000 images of handwritten digits (MINST)
= eachimageis 28 x 28 — 784 D space

L EdhUdwhNnN=~0Oo

PCA projection of its 4D latent space



REDUCTION VIA NN: RESULTS

Result when not assuring a standard normal distribution in
the latent space

NN »DWN O

-20

-3 -20 -10 0 10 20 30 40 50

li(0,9) = —E. g(zle;) log po(zi | 2)] + KL(go(2 | i) || p(2))

Reconstruction loss Kullback-Leibler divergence



INTERPOLATION IN LATENT SPACE

What's the advantage of it?

= |atent space allows easy interpolation

= move between samples in latent space and reconstruct novel
instances by the decoder

» not easily possible using other non-linear layouts like MDS, T-SNE

See example here

Another application: :Deep clustering

= provides a convenient dimension reduction for k-means and
other clustering algorithms

= linearizes non-linear data manifolds in high-D space which often
appear in computer vision tasks


https://thilospinner.com/towards-an-interpretable-latent-space/

CLUSTER ANALYSIS AND EMBEDDING OF
CATEGORICAL DATA



TEXT PROCESSING

Let's look at application in text processing

Assume you are given a large corpus of documents and you
wish to get an overview about what they contain

What can you do?



SINGULAR VALUE DECOMPOSITION (SVD)

The same as PCA when the mean of each attribute is zero

SVD does not subtract the mean
= appropriate if values close to zero should not be influential
=  PCA puts them at in the extreme negative side

SVD often used for text analysis
= values close to zero are frequent and should not affect the analysis



SINGULAR VALUE DECOMPOSITION (SVD)

Decomposes C into the matrix:

LATENT
DIMEMNSIOMNS COMPOMENTS

d > — ks LATENT
N COMPOMNENTS DIMENSIONS
T E |l E o k—s n < d
Ell 2
Qk Ek PFQ E ORIGINAL T =2 e 21| 7ok BaAsIS
an = 2| @S XK ZZk X Z Zk VECTORS OF
: PATA <|xe8| &2 22| rowsorD
= 5|8 & s gl
8 a E 8 8 P
Wi ¥ %,: IMPORTANCE OF
D Q, LATENT COMPONENTS

g, and p; are two column vectors with significance ¢;
QkEkPE:ZﬁﬂPz ZEH D)
=1

Example: in a user-item ratings matrix we wish to determine:
= areduced representation of the users
= areduced representation of the items
= SVD has the basis vectors for both of these reductions



SVD COMPUTATION

Find the matrices U, D, and V such that:
C=UDV'

U are the Eigenvectors of CC'

V are the Eigenvectors of C'C

D a diagonal matrix of \/}Tk where Ak are Eigenvalues of CCT
k=Rank(C)<Min(r-1,c-1)



LATENT SEMANTIC ANALYSIS

Create an occurrence matrix (term-document matrix)
= words (terms t) are the rows
= paragraphs (documents d) are the columns
= uses the term frequency—inverse document frequency (tf-idf) metric
= {f(td) = simplest form is frequency of t in d = f(t,d)

Index Words Titles
M(T2(T3(T4 |TH|Te |T7 |18 |T9
book 111
dads 1 1
dummies 1 1
estate 1 1
guide| 1 1
mvesting| 1 (1 |1 (11 1] 1]1][1
market| 1 1
real 1 1
rich 2 1
stock| 1 1 1
value 11




LATENT SEMANTIC ANALYSIS

Create an occurrence matrix (term-document matrix)

words (terms t) are the rows

paragraphs (documents d) are the columns

uses the term frequency—inverse document frequency (tf-idf) metric
tf(t,d) = simplest form is frequency of t in d = f(t,d)

. . N
idf(t,d) idf(t,D) =1log {deD:ted)

N = number of docs = |D|, D is the corpus of documents
idf is @ measure of term rareness, it's 0 when term occurs in all of D
important terms get a higher tf-idf

Use SVD to reduce the number of rows

preserves similarity of columns



CO-OCCURRENCE TF-IDT MATRIX

Tl 0.00060 0.00012  0.00003 0.00003 0.00333 0.00048 -+ d,;, )
TZ 0 0 0 0 0 0 L/ 5
T3 0 2.98862 0 0 0 149431 -+ A3,
T4 0 0 0 13.32555 0 0 o Ay
TS 0 0 0 0 0 0 wor. Qg
T6 1.03442 1.03442 0 0 0 3.10326 -+ dg,
T, m \, ) ) A3 A4 s A6 e Ay J
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VISUALIZING THE CONCEPT SPACE

How many concepts to use when approximating the matrix?
= if too few, important patterns are left out
= if too many, noise caused by random word choices will creep in
= can use the elbow method in the scree plot

Throw out the 1st dimension in U and V
= in U itis correlated with document length T il T
= inV it correlates with the number of times a term was mentioned

concept 2
4 concept 3
Now we have a k-D concept space °. P
shared by both terms and documents ® o o0
® document ®

® term concept 1



VISUALIZING THE CONCEPT SPACE

Project the k-D concept space into 2D and visualize as a map
= can cluster the map

= the cluster of documents are then labeled by the terms
= provides map semantics

0.6 XY Plot of Words and Titles
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Dimension 2



L SA DISADVANTAGES

LSA assumes a Gaussian distribution and Frobenius norm
= this may not fit all problems

LSA cannot handle polysemy effectively
= need LDA (Latent Dirichlet Allocation) for this

LSA depends heavily on SVD

= computationally intensive
» hard to update as new documents appear
=  but faster algorithms have emerged recently



WHAT ABOUT CATEGORICAL VARIABLES?

You will need to use correspondence analysis (CA)
= (A s PCA for categorical variables
= related to factor analysis

Makes use of the y? test
=  what's y2?



Chi-square Test (Nominal Data)

A chi-square test is used to investigate relationships

Relationships between categorical, or nominal-scale,
variables representing attributes of people, interaction
techniques, systems, etc.

Data organized in a contingency table — cross tabulation
containing counts (frequency data) for number of
observations in each category

A chi-square test compares the observed values against
expected values

Expected values assume “no difference”

Research question:

— Do males and females differ in their method of scrolling on
desktop systems? (next slide)

81



Chi-square — Example #1

Number of Users

30 ~

25 A

20 A

15 -

10 -

Observed Number of Users

Scrolling Method

MW = mouse wheel
CD = clicking, dragging

KB = keyboard

O Mouse Wheel
Clicking or Dragging
Keyboard

Gender Total
MW | CD | KB
Male 28 15 13 56
Female | 21 9 15 45
Total 49 | 24 28 101
Male

Gender

Female

82



Chi-square — Example #1

56.0-49.0/101=27.2

Expected Number of Users

Scrolling Method

Gender Total
MW | CD KB

Male(| 27.2 [)13.3 [ 155 | 56.0

Female 2481 107 | 125 45.0

Total | 49.0 | 240 | 280 | 101 |

(Expected-Observed)?/Expected = (28-27.2)%/27.2

-
Significant if it
exceeds critical value

Chi Squares

Scrolling Method

Gender’ | ch KB Total
Male( [ 0.025[9.215] 0.411 | 0651
Female [065210.268| 0511 | 0.811
Total [0.057[0483] 0922 | 1.462

\(next slide)

83



Chi-square Critical Values

« Decide in advance on alpha (typically .05)

« Degrees of freedom
—df=(r-1)(c-1)=(2-1)B-1)=2
— r = number of rows, ¢ = number of columns

Significance Degrees of Freedom
Threshold (a) 1 2 3 4 5 6 7 8
N 2.71 | 4.61 6.25 7.78 | 9.24 | 10.65 | 12.02 | 13.36
.05 3.84 7.82 9.49 [ 11.07 | 12.59 | 14.07 | 15.51
.01 6.64 11.35 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09
.001 18.47 | 20.52 | 22.46 | 24.32 | 26.13

v2=1.462 (< 5.99 .

.not significant)

84



CORRESPONDENCE ANALYSIS (CA)

E le: more info
Xam p €. Smoking Category

Staff (1) [(2) [(3) (4) Row

Group Mone |Light | Medium |Heavy | Totals

(1) Senior Managers | 4 2 3 2 11

(2) Junior Managers | 4 3 7 4 18

(3) Senior Employees |25 |10 |12 4 51

(4) Junior Employees |18 |24 |33 13 88

(5) Secretaries 10 6 7 2 25

Column Totals 61 |45 |62 25 193

There are two high-D spaces
= 4D (column) space spanned by smoking habits — plot staff group
= 5D (row) space spanned by staff group — plot smoking habits
Are these two spaces (the rows and columns) independent ?
= this occurs when the y? statistics of the table is insignificant


http://www.uta.edu/faculty/sawasthi/Statistics/stcoran.html

Smoking Category
Staff (1) |(2) |(3) (4) |Row
Group None |Light| Medium | Heavy | Totals
CA EIGEN ANALYSIS FEraiitRE
(2) Junior Managers | 4 3 7 - 18
(3) Senior Employees |25 |10 |12 4 51
(4) Junior Employees |18 |24 |33 13 88
(5) Secretaries 10 6 7 2 25
Column Totals 61 45 |62 25 193

Let's do some plotting
= compute distance matrix of the rows CC’
= compute Eigenvector matrix U and the Eigenvalue matrix D
= sort eigenvectors by values, pick two major vectors, create 2D plot

Ea Graphi: 20k Mol of Ay Corednalng: Daranzione: 13 2 == Senlor employees most Slmllar
20 Flod of Rew Cooednatas; Dimangions: 1 2 3 .
Inpu Table (Rowa x Calummsl:5 x4 to secretaries
= Slandardizalion: How and column prafies
£ gm
=
s 0 pits
7 57 Manag
B0 + , \ . .
= i Eigenvalues and Inertia for all Dimensions
E l].1III Input Table (Rows x Columns): 5 x 4
=T Total Inertia = .08519 Chi? = 16.442
x 005 i
E 0,00 * MNo. of |Singular |Eigen- |Perc. of |Cumulatv |Chi
= 005 Zacier 'u:,m Dims |Values |Values |Inertia |Percent |Squares
o= i
Al 273421 |.074759|87.75587|87.7559 |14.42851
E -u'ﬁ.ng H R oz P e T 0o 0. 0.3 03 0.4 LA00086 |.010017111.75865|99.5145  [1.93332
=
& Dimension 1; Eigerwakss: 07476 (£7.76% of narlia) 020337 |.000414].48547 |100.0000 |.07982




CA EIGEN ANALYSIS INte=ak

Smoking Category

Staff (1)

Group None

(2)
Light

(3)
Medium

(4)
Heavy

Row
Totals

(2) Junior Managers
(3) Senior Employees |25
(4) Junior Employees |18
(5) Secretaries i0

2
3
10
24
6

3
7
12
33
7

13

11
18
31
88
25

Column Totals 61

45

62

25

193

compute distance matrix of the columns C'C

compute Eigenvector matrix V (gives the same Eigenvalue matrix

D)

sort eigenvectors by value

pick two major vectors

create 2D plot of smoking categories

Following (next slide):

combine the plots of U and V

if the %2 statistics was significant we should see some
dependencies




COMBINED CA PLOT

Correspondence analysis biplot

@ junior_mngr
gé‘ Aheavy @ senior_mngr
D 1
(oY}
c
o)
= A none
[y @ senior_empl
E A medium
(]
@ junior_empl
@ secretary
0 | A jight
! T T I T
-1 -5 0 5 1

Dimension 1 (87.8%) .

® rank 4 smoking

coordinates in symmetric normalization

Interpretation sample (using the y? frequentist mindset)
= relatively speaking, there are more non-smoking senior employees



EXTENDING TO CASES

Casze Senior |Junior |Senior Junior

Mumber | Manager | Manager |Employee |Employee|Secretary | None|Light |Medium | Heavy
1 1 0 0 ] 0 1 0 0 0

2 1 0 0 ] ] 1 0 0 0

3 1 0 0 0 0 1 0 0 0

4 1 0 0 ] 0 1 0 0 0

B 1 0 0 ] 0 0 1 0 0

191 0 0 0 0 1 0 0 1 0

192 0 0 ] [y 1 0 0 0 1

1913 0 0 0 0 1 0 0 0 1

Plot would now show 193 cases and 9 variables




MULTIPLE CORRESPONDENCE ANALYSIS

Extension where there are more than 2 categorical variables

SURVIVAL | AGE LOCATION

Case No. |NO |YES |LESSTS50|A50TO69 |OVERG69 | TOKYO | BOSTON|GLAMORGN

0 1 0 1 0 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 1 0 0 1

o W =

762 1 0 0 1 0 1 0 0
763 0 1 1 0 0 0 1 0
764 0 1 0 1 0 0 0 1

Let's call it matrix X



MULTIPLE CORRESPONDENCE ANALYSIS

Compute X'X to get the Burt Table

SURVIVAL |AGE LOCATION

MO |YES |<50|50-69[69+ | TOKYQ|BOSTON | GLAMORGN
SURVIVAL:NO 210 |0 68 |93 49 &0 82 68
SURVIVAL:YES 0 554 |212 |258 84 230 171 153
AGE:UNDER_50 68 |212 |280 |0 0 151 58 71
AGE:A_50TO69 93 |258 |0 351 0 120 122 109
AGE:OVER_69 49 |84 |0 0 133 | 19 73 41
LOCATION:TOKYQ 60 |230 151 |120 19 290 0 0
LOCATION:BOSTON 82 |171 |58 |122 73 0 253 0
LOCATION:GLAMORGN (68 [153 |71 109 |41 0 0 221

Compute Eigenvectors and Eigenvalues

= keep top two Eigenvectors/values

= visualize the attribute loadings of these two Eigenvectors into the
Burt table plot (the loadings are the coordinates)



| ARGER MCA EXAMPLE

Results of a survey of car owners and car attributes

Burt Table
Married
1 2 weith

American European Japanese Large Medium Small Family Sporty Work Income Incomes Own Rent Married Kids Single Single with Kids Female Male
American 125 o o 36 &0 29 81 24 20 58 &7 53 32 37 50 32 =1 58 &7
European o 44 o 4 20 20 i7 23 4 18 26 38 =1 13 15 15 i 21 23
Japanese o o 165 2 =% 102 Fi-] 39 30 74 91 113 54 ol 44 62 8 70 95
Large 36 4 2 42 o o 30 1 11 20 22 35 7 5 21 11 i ir 253
Medium &0 20 el o 141 o g5 39 13 57 g4 108 35 42 51 40 8 70 7l
Small 25 20 102 o o 151 o3 &6 30 73 78 101 S0 50 37 58 & &2 g5
Family 81 17 -] 30 g5 35 174 o o &9 i05 130 44 50 79 35 10 83 51
Sporty 24 23 59 1 35 &6 o 106 o 35 ol 7l 35 35 12 37 2 44 &2
Work 20 4 30 11 13 30 o o 54 26 28 41 13 16 18 17 3 22 32
1 Income 58 18 74 20 a7 73 (=] 35 26 150 o g0 70 10 27 55 14 47 103
2 Incomes &7 26 51 22 g4 78 105 51 28 o i84 162 22 o1 g2 10 i i0z2 g2
Owrn 53 38 111 35 106 101 130 i 41 g0 162 242 o 76 106 52 8 114 128
Rent 32 & 54 7 35 50 44 35 13 70 22 v} 52 23 i 37 7 35 37
Married 37 13 51 9 42 50 50 35 16 10 91 76 23 101 0 v] v] 33 48
:_:l:hd i 50 15 44 21 31 a7 79 12 18 27 82 10& 3 o 109 o o 48 &1
Single 32 15 &2 11 40 58 35 57 17 55 10 52 a7 o o 10% o 35 74
Single with Kids & 1 g8 1 ] & i0 2 3 14 1 g8 7 o o o 15 13 2
Female 58 21 70 17 70 62 83 44 22 47 i02 114 33 a2 48 33 13 149 v}
Male &7 23 95 23 71 89 91 62 32 103 Bz 128 57 48 61 74 2 0 185

more info see here



https://v8doc.sas.com/sashtml/stat/chap24/sect27.htm

MCA EXAMPLE (2)

Summary table:

Inertia and Chi-Square Decomposition

Singular Principal Chi- Cumulative 4 8 12 1€ 20
Value  Inertia Square Percent Percent + t = : :
0.56534 0.32415 970.77 18.591 18,51 4+444342i2a2343a4a3a434a
0.48352 0.233B0 700.17 13.64 37,55 <issssiiiiisiadia
0.42716 0.1B247 546.45 10,64 43,19 +t4assaasaaasaa
0.41215 0.16%987 S0B.73 @,51 53,10 ++42saasaaaa
0.38773 0.15033 450.22 8.77 £1.87 =++ssazaazaa
0.28520 0.14838 444.35 8.66 70.52 =+essasaasaa
0. 34066 0.11605  347.55 .77 7.2 =esaasaa
0.32983 0.10879 325.79 5.35 83,64 +eeesass
0.31517 0.0%933 297.47 3.79 89,43 =+esaaas
0. 280659 0.07879 235.95 4.60 o403 osses
0.26115 0.0e820 204.24 3.598 Gg.01 =ees
0.18477 0.03414 102.24 1.55 100.00 ==
Total 1.71429 5133.92 100,00

Degrees of Freedom = 324




MCA EXAMPLE (3)

-0.4035 0.8125
-0.0568 -0.5552
0.2208 -0.4&78
-0.6545 1.5666
-0.2562 0.05635
0.432c -0.5258

=0.4201 0.3802

Most influential column points
(loadings):

0.ee04 -0.eE856

0.0575 0.1535

0.8251 0.5472

-0.6727 -0.4461

-0.3887 -0.0543

1.0225 0.2480

-0.4165 -0.7554

=0.8200 0.2237

1.1461 0.2530

0.4373 0.8736

-0.3365 -0.2057

0.2710 0.1856




MCA EXAMPLE (4)

MGCA of Car Owners and Car Attnbutes

[| [| | [| |
1 1 I 1 I
20T 4
o LArge
15 1+ 4
F 10T 1
2 + Sngle wih Hids
Burt table plot: :  Amenody
y 2
[nl]
¥
R 1 Inzome +
%] . Family
E. ¥ Marned wih K 4 ¥ angle
= 'ork * Ml dl= Remt
- * Medpim
oo
* o
* Fermald
4 2 Inoormes "
—05 T Jaggnese o Smal T
Europ ean
*F spary
* Mared
—10 + il
L L L L L
1 1 I 1 I
-0 -5 0.0 0% 1.0 1.5

Dimenson 1 (8.91%)



PLOT OBSERVATIONS

Top-right quadrant:

= categories single, single with kids, 1 income, and renting a home
are associated

Proceeding clockwise:

» the categories sporty, small, and Japanese are associated

= being married, owning your own home, and having two incomes
are associated

= having children is associated with owning a large American family
car

Such information could be used in market research to identify
target audiences for advertisements



GARTNER MAGIC OUADRANT

A Gartner Magic Quadrant is
a culmination of research in a
specific market, providing a
wide-angle view of the
relative positions of the
market's competitors

This concept can be used for
other dimension pairs as well
= essentially require to think

of a segmentation of the 4
quadrants

ABILITY TO EXECUTE

|
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LEADERS

VISIONARIES

COMPLETENESS OF WISION




Figure 1.

R

ABILITY TO EXECUTE

Magic Quadrant for Business Intelligence and Analytics Platforms

. Tableau

Qlik
Microsoft

Birst . SAP__ SAS . IBM
: < ‘Tibco Software
Logi Analytics @) ®) Oracle

Information Builders  MicroStrategy
Jaspersoft “GoodData ‘ Alteryx

Bitam . Prognoz
Yellowfin Pentaho . Panorama Software
‘. Board International
Salient Management Company
Actuate @
Targit @
arcplan ‘
. Pyramid Analytics
Infor .

COMPLETENESSOFVISION ——>»
Source: Gartner (February 2014)

As of February 2014
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